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A novel chiral Schiff base macrocycle 1 was synthesized by [3+3] condensation of enantiomerically pure
trans-1,2-diaminocyclohexane with azobenzene-4,40-dicarbaldehyde. Subsequent reduction of 1 afforded
macrocyclic hexamine 2 having three azobenzene units. The former could be converted into a benzene
gel, while the latter could include several aromatic guest molecules.
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Recently, chiral Schiff base macrocycles having cavities of vari-
ous sizes have been synthesized, and their applications have been
investigated.1 Gawronski et al. developed a new strategy for the
synthesis of chiral macrocycles via the [3+3] cyclocondensation
of trans-(1R,2R)-diaminocyclohexane with terephthalaldehyde
and isophthalaldehyde.2 Later, several research groups synthesized
chiral macrocyclic Schiff bases having central cavities of different
sizes3 and studied their applications in molecular recognition, opti-
cal resolution, fluorescence sensing, and asymmetric catalysis.4 Re-
cently, we investigated the molecular recognition ability of the
aforementioned types of host compounds and reported that they
can be used as chiral NMR shift reagents5, chiral catalysts for asym-
metric Henry reaction6, and photochromic crystals.7 Herein, we re-
port the synthesis, crystal structure, photochromic properties, and
inclusion and gelation properties of a novel chiral Schiff base mac-
rocycle having an azobenzene chromophore 1 and the reduced
form of this macrocycle 2.

The chiral Schiff base macrocycle (R,R,R,R,R,R)-1 was synthe-
sized by the [3+3] cyclocondensation of enantiomerically pure
(R,R)-1,2-diaminocyclohexane with azobenzene-4,40-dicarbalde-
hyde8 in CH2Cl2, as shown in Scheme 1. The product was confirmed
by NMR and mass spectrometry.9 Subsequent sodium borohydride
reduction of (R,R,R,R,R,R)-1 gave the corresponding macrocyclic
hexamine (R,R,R,R,R,R)-2 in good yield.10 Similarly, (S,S,S,S,S,S)-1
and (S,S,S,S,S,S)-2 were synthesized by the condensation of azoben-
zene-4,40-dicarbaldehyde with (S,S)-1,2-diaminocyclohexane. The
chiral nature of macrocycles 1 and 2 was determined from their
circular dichroism (CD) spectra. (Figs. 1 and 2) These spectra
showed mirror images; further, because the degree of extended
conjugation in the macrocyclic imine 1 was greater than that in
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the macrocyclic amine 2, Cotton effects were observed at a longer
wavelength in the case of the former.

Upon irradiation of a CHCl3 solution of (R,R,R,R,R,R)-1 by 365 nm
light for 30 min, the intensity of the absorption peak at 348 nm de-
creased, while that of the bands at 273 nm and 450 nm increased.
The original spectrum was recovered when the irradiated solution
was allowed to stand at room temperature for 48 h (Fig. 3).

Figure 4 shows similar changes in the absorption spectrum of
(R,R,R,R,R,R)-2 after irradiation of a CHCl3 solution of 2 by 365 nm
light for 30 min. The absorption peak at 329 nm decreased, while
the bands at 247 nm and 436 nm increased. The original spectrum
could be recovered by allowing the irradiated solution to stand at
room temperature for 48 h.

Unexpectedly, a gel was obtained when 1 (2 mg) was dissolved
in benzene (1 mL) and the solution was cooled to room tempera-
ture, as shown in Figure 5 (left). The gel was translucent and or-
ange colored because of the azobenzene chromophore. To obtain
visual insights into the molecular aggregate, we dried the above-
mentioned gel and analyzed it by scanning electron microscopy
(SEM). The SEM photograph in Figure 5 (right) shows the presence
of elongated fibers with diameters of around 1 lm in the dried gel.
Photoirradiation of the gel by UV light (300–400 nm) for several
hours led to gel–sol transformation; the original gel was recovered
upon heating the sol.

Compound 2 can accommodate various aromatic organic guest
molecules in its cavity to form inclusion complexes with different
host:guest stoichiometric ratios, as shown in Table 1. The host:-
guest stoichiometric ratio is 1:1 when using benzene and toluene
as the guest molecules and 2:1 when using o-, m-, and p-xylenes
as the guests. This indicates that xylene molecules are too large
to be accomodated in the host cavity of 2 as a 1:1 host–guest ratio.
Figure 6 shows the thermogravimetric (TG) trace of the 1:1 inclu-
sion crystals obtained by the inclusion of toluene in 2.
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Figure 2. CD spectra of (R,R,R,R,R,R)-2 (red) and (S,S,S,S,S,S)-2 (blue) in CHCl3.
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Scheme 1. Synthesis of (R,R,R,R,R,R)-1 and 2.

Figure 1. CD spectra of (R,R,R,R,R,R)-1 (red) and (S,S,S,S,S,S)-1 (blue) in CHCl3.

Figure 3. Change in absorption spectrum of 1 in CHCl3. From bottom (photosta-
tionary state upon irradiation with 365-nm light) to top (after maintaining at the
solution room temperature for 48 h).

Figure 4. Change in absorption spectrum of 2 in CHCl3. From bottom (photosta-
tionary state upon irradiation with 365-nm light) to the top (after maintaining the
solution at room temperature for 48 h).
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The X-ray structure of the 1:1 inclusion crystals obtained from 2
and toluene was determined.11 The host resembles a regular trian-
gle in shape. The intercentroid distances, that is, A� � �B, B� � �C, and
C� � �A, were 19.003 Å, 19.221 Å, and 19.212 Å, respectively. Angles
BAC, ABC, and ACB were 60.39�, 60.36�, and 59.26�, respectively.
The methyl group of toluene was disordered between two posi-
tions that have equal probabilities of being occupied as shown in
Figure 7. NH–p interactions were observed between N(12)–H(82)
and the centroid of phenyl ring C2 [2.835 Å, (x, y, x) to (1/2 + x,
1.5 � y, 1 � z)]; The toluene molecules are trapped inside the



Figure 5. Photographs of typical benzene gels (left) and SEM image of dried gels (right).

Figure 6. TG trace of 1:1 inclusion crystals obtained from 2 and toluene.

Table 1
Inclusion and gelation properties of chiral Shiff base macrocycles 1 and 2

Guest 1 2

Benzene Gel 1:1a

Toluene — 1:1
o-Xylene — 2:1
m-Xylene — 2:1
p-Xylene — 2:1

a Host–guest ratios were determined by thermogravimetry (TG) and 1H NMR.

Figure 7. ORTEP diagram of 1:1 toluene complex of 2 with rings and selected atoms labe
The guest toluene molecules are represented in green color.
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cavity of macrocycle. CH–p interactions were observed between
C(60)–H(66) and the centroid of C2 [2.799 Å; (x, y, z) to (�1/
2 + x, 1.5 � y, 1 � z)].

In conclusion, we report the synthesis of new chiral Shiff base
macrocycles having three azobenzene chromophores and the
inclusion, gelation, and photochromic properties of the macrocy-
led. A, B, and C indicate cyclohexane; An, Bn, and Cn (n = 1, 2) indicate phenyl rings.
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cles. Research on further applications of these types of compounds
is currently in progress.
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